Poster A13D-2072

Maintaining High Quality Ozonesonde Datasets for O₃ Trends Studies: Using NASA Wallops Flight Facility and SHADOZ Dual Soundings and Long-term Records for Demonstration

Debra E. Kollonige^{1,2}, Ryan M. Stauffer¹, Anne M. Thompson^{1,3}, Francisco Raimundo da Silva⁴, Katherine R. Wolff^{2,5}, E. Thomas Northam^{2,5}, Herman G. J. Smit⁶, Roeland Van Malderen⁷, Christopher J. Wright⁸, Niko M. Fedkin^{1,9}, and Francis J. Schmidlin⁵

¹NASA/Goddard Space Flight Center; ²SSAI; ³GESTAR, UMBC; ⁴Brazilian National Institute of Space Research (INPE), Natal, Brazil; ⁵NASA Wallops Flight Facility, Wallops Is., VA, USA; ⁶Institute of Climate & Energy Sys. 3: Troposphere (ICE-3), Jülich, Germany; ⁷RMI, Uccle, Belgium; ⁸KBRwyle, Wallops Is., VA, USA; ⁹ORAU, NASA Post-doc Program

Dual Sonde Launches: Testing New Vaisala Systems

- Goals for testing the two radiosondes:
 - (1) Maintain consistency in data before and after change to Vaisala RS-41.
 - (2) Create SOPs for new Vaisala ground system while keeping standard practices.

Dual sonde Payload

soundings including Science

electrochemical concentration cell (ECC) ozone sensors; both also have long-term **Dobson** records.

https://tropo.gsfc.nasa.gov/shadoz/Natal.html

- Dating back to digital measurement era (since 1995 for WFF), WFF and Natal ozone profiles are reprocessed and homogenized based on WMO GAW guidelines (*Smit et al.*, 2021) to remove known biases, improve overall accuracy, and provide uncertainties for each profile (Witte et al., 2018; Witte et al., 2019; available in SHADOZ V06 format (link above).
- WFF has legacy of evaluating ozonesondes w/ dual sonde launches testing Standard Operating Procedures (SOPs), radiosonde/ozonesonde systems and various combinations of ECC sensors and sensing solution type (SST) formulae.
- Both stations are part of Network for Detection of Atmospheric Composition **Change (NDACC)** and data can be found at NDACC Data Housing Facility (DHF).
- Non-homogenized data for pre-digital era can be found at WOUDC. Digital era record (current data) is in SHADOZ V06 format on the SHADOZ archive.

Wallops and Natal Ozone Teams and Measurements

Results of Dual Sonde Launches: Wallops and Natal

Greenbelt Team visited the WFF team in Oct 2021/May 2022 and the Natal Team in March 2024 to prepare and launch multiple dual sondes (LMS & RS-41 w/ SPC). The profiles (Figure 4 and 5) and comparisons of total column ozone (TCO; Figure 6) are below.

Figure 4: Partial pressure (mPa), temperature (deg C), and relative humidity (%) profiles from each dual sonde launch Oct 2021 and May 2022 at Wallops.

NASA GSFC Greenbelt and WFF Team: Row 1 (left-to-right): Dr. Anne Thompson, Rhonie Wolff, and Dr. Debra Kollonige. Row 2 (left-to-right): Dr. Ryan Stauffer, Dr. Niko Fedkin, Chris Wright, and Tom Northam.

INPE Natal Brazil Team (left-to-right): Edmilson Silva, Tercio Penha, Renan Gadelha, and Dr. Francisco Raimundo. Not shown are Dr. Maria Paulete Pereira Martins and Joao Vitor Batista.

- The well-established WFF and Natal ozonesonde systems are comprised of SPC ECC sensors filled with a 1% KI - full buffer SST, interfaced with a Lockheed Martin Sippican (LMS) radiosonde.
- WFF and Natal ozone timeseries below shows the long-standing stability and high-quality nature of these ozone datasets.
- Radiosonde systems were upgraded to new state-of-the-art Vaisala systems and operational radiosondes switched to RS-41 in 2022 for WFF and 2024 for Natal.

- Oct 2021 profiles have ~1% TCO diff b/w sondes and w/ satellites or Dobson.
- 10-11 May 2022 profiles have larger differences ranging from 3-7%. Perhaps SPC ozonesonde (40xxx series) issues?

Figure 5: Partial pressure (mPa), temperature (deg C), and relative humidity (%) profiles from each dual sonde launch 13-15 March 2024 at Natal.

On 13 March, ozonesonde comparisons ranged b/w 0-2% difference with Dobson and satellite TCO.

On 14-15 March, LMS and Vaisala sondes were lower than Dobson TCO by ~4% and 5-9%, respectively; differences ranged between 4-7% with satellites. Vaisala sondes observed lower stratospheric ozone than LMS b/w 25-30 km.

Figure 6: TCO comparisons b/w ozonesondes, Dobson (red), SNPP OMPS (black), and OMI (blue) during dual sonde launches at Wallops and Natal.

Wallops and Natal Tropospheric Ozone Trends

WFF and Natal highquality O_3 datasets are

Figure 7: QR 50th percentile

Time-series of Wallops (Figure 2) and Natal (Figure 3) ECC ozonesonde and satellite comparisons. Top panel in each compares ECC ozonesondes and Aura MLS stratospheric O_3 profiles (%); bottom panels compare sondes with satellite TCO. Colors on top panels indicate where ECC O_3 is greater (red shades) or less (blue) than MLS.

the "gold standard" for trends studies.

WFF has negative TrOC (surface to 300 hPa) O_3 trends (-2.5 ppbv/dec while Natal has slightly positive (0.3 ppbv/dec) trends in Figure 7 (Van Malderen et al. 2024).

trends (ppbv/decade) for 2000-2022 column-avg tropospheric ozone for surface to 300hPa. Color map ranges +/- 3 ppbv/dec and arrow direction shows increase (up), decrease (down) or no trend (rightward). P-values show confidence in trends with blue colors indicating high confidence (p<0.05) trends.

Future Work and References

- Apply *Smit et al.* (2024) time response correction + calibration (TRCC) for fast and slow response of the ECC ozonesonde to the WFF and Natal datasets.
- Compare with conventional approach (along with their estimated uncertainties).

[1] J. C. Witte et al., The NASA Wallops Flight Facility digital ozonesonde record: Reprocessing, uncertainties, and dual launches, JGR: Atmospheres, 124, 3565–3582.

[2] J. C. Witte, et al., First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column, JGR: Atmospheres, 123, 6, 3243-.org/10.1002/2017JD027791, 2018 3268,

[3] H. G. J. Smit, D. Poyraz, R. Van Malderen, A. M. Thompson, D. W. Tarasick, R. M. Stauffer, B. J. Johnson, and D. E. Kollonige, New insights from the Jülich Ozone Sonde Intercomparison Experiment: calibration functions traceable to one ozone reference instrument, Atmos. Meas. Tech., 17, 73–112, https://doi.org/10.5194/amt-17-73-2024, 2024.

[4] Smit, H. G. J., Thompson, A. M., and the ASOPOS 2.0 Panel: Ozonesonde Measurement Principles and Best Operational Practices, WMO Global Atmosphere Watch Report Series, No. 268, World Meteorological Organization, Geneva, ht os://library.wmo.int/idurl/4/57720 (last access: 10 December 2023), 2021.

[5] Van Malderen, R., Thompson, A. M., Kollonige, D. E. et al. Global Ground-based Tropospheric Ozone Measurements: Reference data and trends from individual sites (2000-2022) from the HEGIFTOM homogenized ground-based profile ozone data sets, Atmos. Chem., Phys., submitted, 2024.