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INTER-TECHNIQUE COMPARISON OF INTEGRATED WATER VAPOUR MEASUREMENTS FOR CLIMATE CHANGE ANALYSIS
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ABSTRACT 2. INTER-TECHNIQUE COMPARISONS

Water vapour plays a dominant role in the climate change debate. However, observing water vapour for a climatological
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time period in a consistent and homogeneous manner is a challenging task. To this end, water vapour estimations ZTD 10 IWV CONVERSION EXPLOITATION OF THE IWV DATASETS @ BRUSSELS WORLD-WIDE EXPLOITATION OF IWV DATASETS
derived from ground-based observations of Global Navigation Satellite System (GNSS) receiver networks such as the
International GNSS Service (IGS) network are very promising, with continuous observations spanning over the last 15+ To be compared to the other sources of water vapour observations, the GPS-based We constructed scatter plots of simultaneous (At = 10min for CIMEL, At = 30min for RS and GOME(2)/SCIAMACHY) IWV measurements In a second step, we extended our study worldwide. We created scatter plots similar to Fig. 4 for the selected 28
years. In addition, the AErosol RObotic NETwork (AERONET) also provides long-term and continuous ground-based ZTD provided by the IGS reprocessed/final troposphere products needed to be between the different devices (using the GNSS as reference, see Fig. 4). These plots show that: sites for which we found instrumental co-location. Results are summarised in Figs. 6 and 7 and show that:
observations of the total water vapour content performed with standardized and well-calibrated sun photometers. converted into Integrated Water Vapour content (IWV). For that, we used the
P P P following synthetic agigorithms P (IWV) ' * The mean bias between the different techniques varies between -0.6 mm (GOME/SCIAMACHY) to 0.6 mm (RS9x). «  The CIMEL instrument compares best with the GNSS technique for the IWV measurements (best correlation, lowest
The present study aims to assess the applicability of either datasets for water vapour time series analysis. Therefore, ' *  The best correlation and lowest dispersion of the data points are reached for the CIMEL vs. GNSS comparison. scatter).
we con;par.e thefln|tegrat§g Water Vanou'zj (vazjmeasr?remints l)rEtrl‘I\evedh(a°t zenith) from thiseltwolte:hglg:es, focu1s| 2? 1. Exltrafting thhe vl:eg contribution (éWD) from thg ZTS by * Vaisala’s state-of-the-art radiosonde type (RS9x) compares better w.r.t. GNSS data than the preceding RS80 type. * The regression slopes are for almost all instrument comparisons at all stations smaller than 1.
on a selection of aimost sites worldwide and we show that both techniques agree at the level of -0.26 mm + 1. calculating the hydrostatic contribution (ZHD) based on o _ _ , . : : :
mm of IWV a g amodel a?\d Surf);ce pressure records. * The slopes of regression lines w.r.t. GNSS are closer to 1 for other all-weather devices (RS) than for instruments demanding a partly clear sky (CIMEL, * At sites where different CIMELs can be compared with one IGS GNSS station (e.g. BRMU, NISU, TLSE, BUCU, VENE, OBE2,
' GOME(2)/SCIAMACHY). OPMT), significant differences exist between the regression slopes of the respective scatter plots - geographical
. . . . . . 2. Computing the Q factor to convert the ZWD to IWV 40— I o oL ' sof LT BREERE T ' & ini i ion i ?
In a case study, we also investigate the influence of the clouds on the IWV inter-technique comparison. Therefore, we bases on geither ?urface meteorological records of the s ey We elaborated more on this last soint for the : yNio'?f?gSOX;g;{%} 0 ) : yNio_ffg{g&z%} . dependency or remaining CIMEL calibration issues?
. . . . . L| bios= 0.405, RMS= 1. - bios= 0.612, RMS= 1.1 H H H H H H H
focus on the station Uccle (Brussels, Belgium) and we compare the IWV values obtained from these instruments directly pressure and temperature (Psurf and Tsurf) and/or of CIMEL s Theref P veed : : : * Thereis neither latitudinal nor longitudinal dependency of the scatter plots properties.
s o . ) measurements. Therefore, we analyse s F ‘ E
- in the direction of the sun (“solar slant IWV"). : the mean atmospheric temperature (Tm). ' . s0f s0F :
: : the CIMEL-GNSS scatter plot properties for - - GPS-CIMEL GPS-RS GPS-GOME(2)/SCIAMACHY
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100m asl) presenting the following advantages: regression fine, WhIch 15 aimost entirely due to the - | : s |
)P 9 9 9 high-range IWV measurements (where GNSS IWVs % T '10 »
INSTRUMENTS: * The different ground-based and in-situ instruments and the automatic weather station > CIMEL IWVs). T i - 100 100 100
(time resolution: 10min) are really located at the same site, so that the horizontal and . ) S § 0.95 0.95 0.95
vertical separation of the different devices is not an issue. Clouds Cont”bUte. (?lrectly t.o the GNSS .IWV 5 al: g , 0% , 0% , 0
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« We dispose of the metadata of the different instruments, so that we are aware of any zenith), but not in CIMEL IWV (originally: clear '
PR R (=R instrumental change that might give rise to an inhomogeneity of the instrument's data sky in solar slant then mapped to zenith by using  ##° = 7 125 125
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co-locations are found worldwide between IGS From Fig. 3, we note: 50 T e e e OLAR-SLANT OMPARISONS RUSSELS 070 070
GNSS sites and .AERON ET (.:I.MEL sun photometer «  The different instruments Then, we studied the influence of the different mapping function techniques (used for the Fig. 6: Column bar plots of scatter plot properties (count N, bias, R? and regression slope) of the different instruments versus GNSS
locations (see Flg. 1). Addltlonally, we looked for h diff b . . . T T T T T T T T 7 for the selected sites worldwide. Sites are ordered with increasing latitude. The error bars represent the RMS (bias) and the standard deviation (regression slope).
Ji de | " d GOME(2). SCIAMACHY. IAS| ave different observation GNSS and CIMEL IWV data conversion) on the properties of the GNSS-CIMEL scatter plots. [ ymostens 3520 =
Larols(:’sr?g;]s :t fhu:SCe seesljcnte d sites TP;e data 3 a'Iaio'I't periods. Therefore, we calculated slant IWV (SIWV) in direction of the Sun as follow: 1oL bios= 1756, RUS= 3340 ; -
| : vailability I i
as a function of time for these different instruments + We ha\{ez radiosonde types: * For GNSS, IWV is converted in solar SIWV using the wet mapping function of Niell [1996]. ) o ’ oo ]
at the 28 co-locations is shown in Fig. 2. The IWV data z/a:sagla)s R580 and R590/RS92 Additional contribution of horizontal gradients in the azimuthal direction of the Sun are £ o A 20000 ‘ L |
: : : =Rh>JX). estimated with the mapping function of Chen and Herring [1997]. z 70000 4 g
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below: | e  The GPS IGS IWV is candidate * For CIMEL, the solar slant SIWV values can be calculated by multiplying the IWV values with the = - e L £ : 2 100
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. . Fig. 1: Map of the selected sites that host at least 2 of the considered instruments. for reference device because >0 | . || i 2 g
* GNSS: GPS-based Zenith Total Delay (ZTD) from the IGS of data every 10min (since , , , 30000 4
Final (re)processing (Byun and Bar-Sever [2009.2010]) is . Y Comparing the IWV and SIWV scatter plots (Figs. 4 and 5), we note that the regression 20000 | 6
P g by ' selected —GNSS _ — Sun Photometer _ — Radiosonde GOME  — SCIAMACHY  — GOME-2 : 1999%), only minor data gaps, : : . . : 10000 | - - | .
converted into IWV (see next section). v | i : homogeneous  data (re) - slope is closer to unity for the SIWV measurements, hence there is possibly an impact of S O - N *1
WV is obtained b ing the (direct il e e - — — — E proceiing by IGS 2000 2001 2002 2003 2004 2000 2006 2007 2008 2008 2010 20M1 the different mapping function algorithms used by different devices on the resulting IWVs. %0 S ONSS [oam] 150 ©o oo v o v e wo oy
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. i : S : , Fig. 5: Scatter plot of simultaneous CIMEL and GNSS solar Fig. 7: Column bar plots of scatter plot properties (count N, bias, R? and regression slope) of the different instruments versus GNSS averaged over all
SCOR = : Fig.3: O fall IWV dat lable at Uccle, B Is.
radiance at a 940nm'Cha_nne| (centred on the 946nm CHUR - - e e = 9 verviewora araavaiiable arreete, Brsen slant IWV measurements at Uccle. stations included in the inter-technique comparison. Error bars: see Fig. 6.
water vapour absorption line). v . —_———— * We dispose of weather data with 10 minutes of time resolution only since 1999.
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