
Interpreting the time variability of integrated water vapour retrievals  
using local meteorological data and teleconnection indices. 

Being the most important natural greenhouse gas and responsible for the largest known feedback mechanism 

for amplifying climate change, the role of water vapour is crucial in a warming climate. Atmospheric water 

vapour is highly variable, both in space and in time. Therefore, measuring it remains a demanding and 

challenging task. As a consequence, in this study, three different datasets have been taken into account. At 118 

globally distributed Global Positioning System (GPS) sites, Integrated Water Vapour (IWV) is retrieved from 

a homogeneous data reprocessing from 1995-2010. At those site locations, also UV/VIS IWV satellite retrievals 

by GOME, SCIAMACHY and GOME-2 (= GOMESCIA), and ERA-Interim reanalysis output is used to study the 

time variability of the IWV.  

 

The IWV seasonal behaviour and the inter-annual variability are fitted together by means of a stepwise multiple 

linear regression of the station’s time series, with a selection of regionally dependent candidate explanatory 

variables. Overall, the variables that are most frequently used and explain the largest fractions of the IWV 

variability are the surface temperature and precipitation. Also the surface pressure and tropopause pressure 

(in particular for higher latitude sites) are important contributors to the IWV time variability. All these variables 

also seem to account for the sign of long-term trend in the IWV time series to a large extent, when considered as 

explanatory variable. Furthermore, the multiple linear regression linked the IWV variability at some particular 

regions to teleconnection patterns or climate/oceanic indices like the North Oscillation index for West USA, 

the El Niňo Southern Oscillation (ENSO) for East Asia, the East Atlantic (associated with the North Atlantic 

Oscillation, NAO) index for Europe. 
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ABSTRACT 

• With the (empirical) stepwise multiple linear regression of the IWV monthly mean time series, we aimed at finding the most relevant variables to explain the IWV variability for different regions. As 

we started from a large selection of potential explanatory variables (i.e. 100 to 200 variables if allowing their time series to precede the IWV time series by 1 to 6 months), but only end up with a 

considerable small amount of effectively included explanatory variables (around 7 to 8 on average), with a reasonable geographical footprint (see the summary Fig. 4), and mostly consistent 

among the three datasets used, we are confident in our approach. 

• In particular, it could be confirmed that, apart from the harmonics or long-term means that account for a large part of the seasonal variability, the bulk of the remaining IWV time variability linked 

with the surface temperature and precipitation. The precipitation is included by a statistical t-test in the multiple linear regression for the largest number of sites, but with a lower explained fraction of 

the IWV variability than the surface temperature. The other site specific explanatory variables, the surface pressure and tropopause pressure, are also important contributors to the multiple linear 

regression, the latter seems to be more common at high-latitude sites.  

• To identify which of those explanatory variables accounts most for the trend sign of the IWV time series is not straightforward: as a matter of fact, we found that each of those variables results in a 

regression term with equal trend sign as the IWV trend sign for about 70% of the cases, and this for the three datasets.  

• This analysis could be repeated for the whole globe, making use of the gridded IWV datasets (GOMESCIA and ERA-Interim/ERA5).  

Overall: 
 

• the best fits are obtained for the ERA-Interim output (see Fig 3, on average explaining 90% of the IWV variability), and the 

“worst” fits for the GOMESCIA dataset (on average 85.5%), with the GPS time series there in between (88.9%).  

• The higher ERA-Interim explained variance is also obtained by including a higher number of explanatory variables (on 

average 8.2) in the linear regression than for GPS (8.0) and GOMESCIA (6.8).  

• the most important explanatory variables (next to the long-term means) are the surface temperature, precipitation, surface 

pressure and tropopause pressure, both in their frequency of occurrences and in the explained variability. 

• The lower mean explained variability for the GOMESCIA dataset seems to be linked with the significant lower percentage of 

stations for which the precipitation and the surface pressure are included in the linear regression (resp. around 40% and 

25%), in comparison with the other two datasets (resp. above 70% and around 40%).  

Fig. 1: Correlation coefficients between the monthly means of GOMESCIA and GPS (left) and ERA-Interim and GPS (right).   
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ground-based GPS 

 118 sites worldwide with 

homogeneous data 

processing from 1995-Mar 

2011 (IGS repro 1) 

 time delay measurement, 

ZTD  IWV needs Psurf 

and Tmean   

 Δt = 5’, but in practice: 

every 6h 

ERA-Interim 

 worldwide reanalysis from 

the ECMWF 

 IWV from surface fields, 

corrected to GNSS station 

height, horizontal 

interpolation 

 0.75° × 0.75°  

 Δt = 6h 

 

GOME/SCIAMACHY/GOME-2 

 nadir spectroscopy of back-
scattered light (around 700 nm 
for water vapour) 

 global coverage, here: 
GOMESCIA satellite overpass 
measurements at GPS stations  

 available as 1° × 1° grid 

 mid 1995 to present 

 Δt = 1 month (climate product, 
Beirle et al., 2018) 
 

The monthly mean IWV time series are fitted by a multiple linear regression model: 

 

 

 

with 

• t the timestep (one month),  

• A0 the intercept,  

• A1 the annual trend,  

• Aseas,i Xseas,i (t) describing the seasonal cycle of the IWV, either by using the long-term monthly means or by 

harmonic functions, 

• Xj(t) the monthly mean time series from explanatory variables like surface temperature, surface pressure, 

tropopause pressure, precipitation, teleconnection indices & the monthly mean time series generated from 

teleconnection indices shifted with 1 to 6 months back in time,  

• Bj their respective coefficients,  

• m denoting the number of candidate explanatory variables, depending on the geographical region (ranges 

between 103 and 194), 

• ε(t) representing the residuals.  

𝑌 𝑡 = 𝐴0 + 𝐴1𝑡 + 𝐴𝑠𝑒𝑎𝑠,𝑖𝑋𝑠𝑒𝑎𝑠,𝑖 𝑡 +

𝑛

𝑖=2

 𝐵𝑗𝑋𝑗 𝑡 + 𝜖(𝑡)

𝑚

𝑗=0

 

Regional: 
 

1. correlation analysis between IWV (from NCEP/NCAR reanalysis) and different teleconnection indices 

for different regions to determine potential explanatory variables per region. 

2. check if those potential explanatory variables are independent (also with the local meteorological 

variables). 
 

For every site (IWV time series Y(t)): 
 

3. rank the explanatory variables by decreasing impact on Y(t), i.e. explained variability by single linear 

regression for IWV. 

4. step-by-step, add those ranked explanatory variables to the multiple linear regression and test the 

statistical significance of an included variable by means of a t-test of the regression coefficient. 

 

 

 

 

3. RESULTS 

EXAMPLES 

In Fig.2, we show 2 examples of a good and bad fit to the IWV time series.  
 

• (left) for the GPS IWV time series at DUBO (Lac Du Bonnet, Canada), the multiple linear regression fit 

explains 98.64% of the variability or a correlation coefficient of 0.993 is obtained. Despite the very high 

percentage of explained variance, a significant positive trend is still present in the residual time series 

(although the annual trend was not retained as a significant explanatory variable in the multiple linear 

regression). Next to the 5 explanatory variables shown in Fig. 3, also Psurf, NP, EAWR (preceding 1 

month), AO (preceding 5 months), NOI (preceding 6 months), WP, NAO, SOI (preceding 5 months) 

have been used.  
 

• (right) for the GOMESCIA IWV time series at HOB2 (Hobart, Australia), the multiple linear regression 

results in an explained variability of 54.55% and a correlation coefficient of 0.739. Additionally to the 5 

explanatory variables shown in Fig. 3, also the surface pressure was included.   

Fig. 2: Examples of the stepwise multiple linear regression fits (in red) to (left) the GPS monthly mean IWV time series 

of DUBO (Lac Du Bonnet, Canada) and (right) the GOMESCIA IWV time series of HOB2 (Hobart, Australia). The 

lower panels show the residuals between the observations and fitted time series of the upper panels (black minus 

red), with a linear fit to the residuals in red (positive trend in both cases, but only significant (full line) for DUBO). 

Fig. 3: The time series of the 5 most important explanatory variables used for the multiple linear regression model fit 

of DUBO (left) and HOB2 (right). The coefficients used here to scale the time series to the IWV observations (black) 

are determined from the single linear regression (just for illustration here). The explanatory variables used are the 

long-term means, tropopause pressure, AMO (especially preceding with 6 months), precipitation, and PT (preceding 1 

month) for DUBO, and the long-term means, tropopause pressure, WHWP (preceding 4 months), precipitation, and 

AOD (preceding 4 months) for HOB2.  
Fig. 4: Summary of the statistically significant explanatory variables that account for the variability of the IWV time series of the three datasets for at least half of the 

stations for different geographical regions. Between brackets: explanatory variables not entirely meeting these criteria, but still dominant in two datasets and/or in a 

considerable amount of the stations. The colours of the dots indicate the explained variability by the multiple linear regression of the ERA-Interim IWV time series. 

 

• GOMESCIA differs most from the other 2 datasets (average R² with GPS is 0.865, while the average R² between 

ERA-Interim and GPS is equal to 0.975): coarser horizontal resolution! 

• worst correlations with GPS for island and coastal sites: spatial representation of the IWV field at the GPS site by 

GOMESCIA & ERA-Interim can be questioned  here.  

Regional: 
 

• A summary of the dominant explanatory variables for different regions (i.e. explanatory variable significantly contributes to 

IWV variability for at least half of the stations of this region, and this for the three IWV datasets) is given in Fig. 4. 

• Consistent patterns arise: the North Pacific index for West USA, Canada and East Asia, the West Pacific for a majority of 

the West USA sites, the Pacific Transition index arises for Australia, and to a lesser extent for Latin America, ENSO is well 

established over East Asia, but also present in Australian and Latin American sites. For the West USA, the North 

Oscillation Index is very dominant, and the Arctic Oscillation in Canada. The NAO index could be linked to the IWV 

variability at Canada as well. In Europe. In this last continent, the East Atlantic, Polar/Eurasia, Tropical/Northern 

Hemisphere and Atlantic Multidecadal Oscillation indices are important contributors to the IWV variability.  


